Coefficient H
Please check McNeish (2018) for details. Here, I am using the NSCH dataset as an example.
#load packages
library(haven)
library(tidyverse)
library(userfriendlyscience)
#import data
data<-read_sav("nsch.sav")
#clear the current graphics frame and get ready for the next plot
plot.new()
data %>%
filter(across(c(RECOGBEGIN, CLEAREXP, WRITENAME, RECSHAPES), ~ . < 6)) %>%
select(RECOGBEGIN, CLEAREXP, WRITENAME, RECSHAPES) %>%
scaleStructure()
##
## Information about this analysis:
##
## Dataframe: .
## Items: all
## Observations: 11648
## Positive correlations: 6 out of 6 (100%)
##
## Estimates assuming interval level:
##
## Omega (total): 0.71
## Omega (hierarchical): 0.72
## Revelle's omega (total): 0.75
## Greatest Lower Bound (GLB): 0.73
## Coefficient H: 0.74
## Cronbach's alpha: 0.7
## Confidence intervals:
## Omega (total): [0.71, 0.72]
## Cronbach's alpha: [0.69, 0.71]
##
## Estimates assuming ordinal level:
##
## Ordinal Omega (total): 0.8
## Ordinal Omega (hierarch.): 0.8
## Ordinal Cronbach's alpha: 0.8
## Confidence intervals:
## Ordinal Omega (total): [0.8, 0.81]
## Ordinal Cronbach's alpha: [0.8, 0.81]
##
## Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help ('?scaleStructure') for more information.
References
McNeish, D. (2018). Thanks coefficient alpha, we’ll take it from here. Psychological Methods, 23(3), 412–433. https://doi.org/10.1037/met0000144